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For Online Publication

A Appendix: Model

A.1 Deciding Between Educational and Non-Educational Inputs

In order to better understand what happens to effective time endowments in the case with and

without public goods in parental investments, we consider a problem where education is not the

only activity in the household, and other competing activities may be also important for raising

a child. The second part of the problem is related to the possibility that parents can strategically

use investment time to reinforce the difference between siblings for efficiency motives, or they can

compensate the less endowed child for inequality aversion motives. In our model, we explore the

implications of both cases.

We start assuming that parents allocate time among different activities to raise their children.

Specifically, parents can allocate time between educational activities TE or non educational activities

TNE. We can think of the parents’ problem as

max
TE,TNE

V(TE, TNE) (1)

s.t. TE + TNE ≤ T

Where V is the utility coming from educational and non educational activities1. T is the total time

allocated to raise the children in the household. Note that, if there is more than one child in the

household, parents use the aggregate educational and non educational times and utilities to make

the allocation decision.

1An alternative formulation consists on assuming that parents maximize the production of “children qual-
ity,” which uses time in both educational and non educational inputs. Thus, the allocation of time is related
to the marginal productivity, instead of the marginal utility which is the key concept in the formulation
presented in the main text.
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We denote T∗
E and T∗

NE the optimal allocation of time, coming from the solution of the maxi-

mization problem in Equation 1. Note that the optimal allocation depends on the marginal utilities

associated with the educational and non-educational activities. In the main text, for expositional

ease, we refer to T∗
E as TE.

A.2 Allocations in the Presence of Public Goods

max
TE,TNE

V(TE, TNE) (2)

s.t. TE + TNE ≤ T

If T∗
E and T∗

NE are the optimal allocation, they satisfied the first order conditions:

∂V(T∗
E , T∗

NE)

∂TE
= λ

∂V(T∗
E , T∗

NE)

∂TNE
= λ

combined:
∂V(T∗

E , T∗
NE)

∂TE
=

∂V(T∗
E , T∗

NE)

∂TNE
(3)

When parents know the public good dimension of parental investment, they realize that their effort

TE effectively converts into T̂E = (1 + δ(i, i′))TE. Therefore, they solve the problem

max
T̂E,TNE

V(T̂E, TNE) (4)

s.t.
T̂E

1 + δ(i, i′)
+ TNE ≤ T

In a similar way to the absence of public good, we combined the first order equations to obtain

∂V(T∗∗
E , T∗∗

NE)

∂TE
(1 + δ(i, i′)) =

∂V(T∗∗
E , T∗∗

NE)

∂TNE
(5)

where T∗∗
E (1 + δ(i, i′) = T̂∗

E. Proposition: If V is a Leontief utility function, the optimal allocation for
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educational activities when there is a degree of public good dimension in parental investments is smaller than

in the case without public goods.

Proof 1

Let’s denote T∗
E and T∗

NE the optimal allocations in the absence of public good dimension on parental

investment, and T∗∗
E and T∗∗

NE the optimal allocations when public good dimension on parental

investment is present. Finally, T̂ represents the effective time when the public good dimension

feature is present.

V is a Leontief production function, expressed as

V(TE, TNE) = min{a1TE, a2TNE}

It is well known that the solution for the optimal allocation for the Leontief utility function is

that

T∗
E =

a2

a1 + a2
T ∧ T∗

NE =
a1

a1 + a2
T (6)

The public good dimension of parental investment effectively increases the parameter a1 from its

original value to a1(1 + δ(i, i′)). Therefore, the new optimal allocations are

T∗∗
E =

a2

a1(1 + δ(i, i′)) + a2
T ∧ T∗

NE =
a1(1 + δ(i, i′))

a1 + a2
T (7)

Comparing the allocation assigned to educational activities in Equation 6 with the one displayed in

Equation 7, it is easy to see that the public good dimension of parental investment induce a decrease

in the time assigned to educational activities.
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A.3 Proof of Proposition 1 from Section 4

If compensating (reinforcing) parents can fully differentiate the educational inputs allocated to each child, the

test score gap between siblings will decrease (increase) over time. If there is only partial parental investment

differentiation, the test score gap may decrease (increase), but this decrease (increase) will be less than in the

case of full differentiation.

Proof 2

For the case where parents can fully differentiate across siblings, Equation 4 and Equation 5 in the

main text indicate that, for given cognitive endowments θ1jg and θ2jg′ , the allocation for child 1 is

just a factor of allocation for child 2.

In particular, the factor is

C(γ, ρ, θ1jg, θ2jg′ ) =

(

θ2jg′

θ1jg

)

γρ
(1−γ)ρ−1

Without loss of generality, let’s assume that child 1 has a higher cognitive endowment that child

2. Thus,
θ2jg′

θ1jg
< 1. Additionally, if ρ < 0, or when parents present a compensating behavior, the

exponent
γρ

(1−γ)ρ−1
> 0 because numerator and denominator are both negative. We conclude that

C(γ, ρ, θ1jg, θ2jg′) < 1, and, therefore, the parental investment allocation for child 2 is bigger than for

child 1, which is consistent with the compensating behavior. Note that, if ρ > 0,
γρ

(1−γ)ρ−1
< 0, and,

therefore C(γ, ρ, θ1jg, θ2jg′) > 1. If child 2 has lower cognitive endowment that child 1, he or she will

receive higher educational inputs. Equation 6 from the main text captures the evolution of cognitive

endowments, and it shows that higher values of educational inputs for child 2 will reduce the gap

between the cognitive endowments2. As θ2jg′ −→ θ1jg, the factor C(γ, ρ, θ1jg, θ2jg′) −→ 1, producing

the convergency of cognitive endowments, optimal educational inputs, and test scores. In the case

of partial differentiation, we can assume without loss of generality that the actual parental invest-

2In order to rule out a overshooting behavior from the parents, and to make the evolution of cognitive
endowment a relatively persistent process, we assume a specific region for the parameters βX, βXθ, and T.

5



ment received by the children is a weighted average of the optimal parental investment expressed

in Equation 4 and Equation 5 in the main text. In other words,

X̃1jg = α1X∗
1jg + (1 − α1)X

∗
2jg′

X̃2jg = α2X∗
1jg + (1 − α2)X

∗
2jg′

where the tilde represents the actual educational input received by each child. Partial differentiation

implies that α1 and α2 are in the interval (0,1). From the previous discussion, we know that if child

2 has a lower endowment, X1jg < X2jg′ , and, therefore

X∗
1jg < X̃1jg < X∗

2jg′ ∧ X∗
1jg < X̃2jg′ < X∗

2jg′

It is easy to conclude that the compensating effort in the partial differentiation case will reduce

the gap in the cognitive endowment dimension less than in the case of full differentiation. This is

because X∗
1jg < X̃1jg, or the high endowed child receives more parental investment in the partial

differentiation case, and X̃2jg′ < X∗
2jg′ implies that the low endowed child receives less parental

investment in the partial differentiation case.

Corollary 2 The public good dimension of parental investment implies partial differentiation across children.

Thus, the compensating (reinforcing) behavior will take longer to reduce (increase) the test score gap than in

the absence of public good dimension.

Proof 3

According to our model, the public good dimension feature of parental investment implies that the
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optimal allocation for child 1 (denoted by double stars) satisfies

X̂∗
1jg = X∗∗

1jg + δ(1, 2)X∗∗
2jg′

=
T∗∗

E

(1 − δ(1, 2))
[

1 +
(

θ2jg′

θ1jg

)

γρ
(1−γ)ρ−1

]

[

(

(

θ2jg′

θ1jg

)

γρ
(1−γ)ρ−1

− δ(1, 2)
)

+ δ(1, 2)
(

1 − δ(1, 2)

(

θ2jg′

θ1jg

)

γρ
(1−γ)ρ−1 )

]

=
T∗∗

E

(1 − δ(1, 2))
[

1 +
(

θ2jg′

θ1jg

)

γρ
(1−γ)ρ−1

]

[

(1 − δ(1, 2)2)

(

θ2jg′

θ1jg

)

γρ
(1−γ)ρ−1

]

=
T∗∗

E
[

1 +
(

θ2jg′

θ1jg

)

γρ
(1−γ)ρ−1

]

[

(1 + δ(1, 2))

(

θ2jg′

θ1jg

)

γρ
(1−γ)ρ−1

]

but T∗∗
E =

T̂∗
E

1 + δ(1, 2)

=
T̂E

∗

[

1 +
(

θ2jg′

θ1jg

)

γρ
(1−γ)ρ−1

]

(

θ2jg′

θ1jg

)

γρ
(1−γ)ρ−1

Which is exactly the same expression asthan in the original case but with T̂∗
E instead of T∗

E . Further-

more, because T̂∗
E < T∗

E , it is easy to show that there is α1 such that X̂∗
1jg can be written as

X̂∗
1jg = α1X∗

1jg + (1 − α1)X
∗
2jg′

Similarly for X̂∗
2jg′ . Therefore, the public good dimension is a particular case of partial differentia-

tion, and the results of the proposition can be applied for this case.

A.4 Simulation Details

All the figures in the main text where constructed using the solutions simulated in Matlab 7.12.

Code is available from the authors.

The solutions for the optimal allocations are presented in Equation 4 and Equation 5 from the

main text. We simulate the solutions with the following parameters:
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Table A.1: Parameters used in Simulation

Optimal Allocation Parameters
ρ 40 equidistant points in the interval [−0.9, 0.9]
γ 0.5
θ1j1 1.5
θ2j1 1.0
TE 0.5

Evolution of Endowments
β 3
η 1.01
ζ 1.25

Public Good Parameters

δ(i, i′) δ(age difference)

δ 0.8
Age Difference 1.5

Starting with the initial values of θ presented in the table above and the solution for opti-

mal allocation of parental investment X∗, we constructed the evolution of θ over time for each

child.

Once we have the sequence of optimal X and the implied θ, we calculate the test scores, using

the equation

Tijg = θ
γ
ijg · X

(1−γ)
ijg

A.5 Additional Extensions to the Model

A.5.1 CES Test Score Production Function

We assume that test scores take as input current cognitive endowment and current parental in-

vestment. In order to obtain a closed form solution, we use a Cobb-Douglas production function.

However, a more general production function can be used.
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Figure A.2 displays the optimal parental investment when test score production follows

Tig = (Xγ
ig + θ

γ
ig)

1/γ

The figure shows, for different γ, we observe that the optimal parental investment crosses their

paths as ρ increases. In other words, for a general test score production function, parents with

inequality aversion invest more in the less endowed child.
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Figure A.1: CES Case
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Note : Note that all coefficients are significant at least at the 10% level with the exception of 7th and 8th grade,
in which the number of observations is smaller and the siblings +3 and OLS is no longer significant.

A.5.2 Solution of the Model in a Dynamic Setup

One alternative approach to modeling the parents problem is a dynamic problem. At time 0, parents

decide the optimal path of parental investments in order to maximize the discounted present value

of the utilities at each grade. This problem is formalized in the following way
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Vg(θ1g, θ2g) = max
X1g ,X2g

(

θ
γρ
1g (X

1−γ
1g )ρ + θ

γρ
2g (X

1−γ
2g )ρ

)
1
ρ
+ Vg+1((θ1(g+1), θ2(g+1)) (8)

s.t. X1g + X2g ≤ TE

θi(g+1) = βθ
η
igX

ζ
ig i ∈ {1, 2}

Assuming that parents have perfect information, and assuming that V9 = constant, we can

solve the problem using backward induction. This means that we solve the problem for grade 8,

which is equivalent to the one presented in the text, for each possible (θ1,8; θ2,8). That is, we solve

the optimal parental investment at grade 8 for each possible cognitive endowment observed at that

time. With that information we construct V8(·, ·).

With the values of V8(·, ·), we can solve the problem for grade 7. Notice that now, parental

investment affects current utility through the current test score and future utility, through the effect

on (θ1,8; θ2,8). Once we obtain the values of V7(·, ·), we can keep iterating backwards.

Figure A.2 displays the evolution of the gap in test scores, when parents solve at time 0 the

dynamic problem. As we can see, the pattern of the gap between test scores has the same features

as the one presented in Figure 4 in the main text.
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Figure A.2: Gap Between Test Scores (δ = 0)
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Note : Note that all coefficients are significant at least at the 10% level with the exception of 7th and 8th grade
where the number of observations is smaller and the siblings +3 and OLS is no longer significant.
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Table A.2: Twins Estimates: Log Birth Weight and Math Achievement in Grades 1-8 by types of Twin Pairs

Dependent Variable: Grade
Standardized Math Scores 1 2 3 4 5 6 7 8
Panel A - Same Sex Twin Pairs
Log Birth Weight 0.446 0.533 0.502 0.632 0.559 0.615 0.551 0.546

[0.065]*** [0.060]*** [0.061]*** [0.060]*** [0.064]*** [0.071]*** [0.081]*** [0.097]***
Constant -3.618 -4.242 -3.952 -4.932 -4.274 -4.675 -4.169 -4.167

[0.507]*** [0.468]*** [0.473]*** [0.469]*** [0.498]*** [0.554]*** [0.634]*** [0.762]***
Number of Same Sex Pairs 5,908 6,726 6,434 6,279 5,505 4,480 3,599 2,617

Panel B - Boy-Girl Twin Pairs
Log Birth Weight 0.595 0.547 0.308 0.608 0.620 0.434 0.657 0.729

[0.145]*** [0.134]*** [0.138]** [0.139]*** [0.151]*** [0.178]** [0.201]*** [0.255]***
Constant -4.770 -4.326 -2.374 -4.721 -4.752 -3.241 -5.022 -5.598

[1.136]*** [1.047]*** [1.084]** [1.091]*** [1.183]*** [1.394]** [1.576]*** [2.002]***
Number of Twin Pairs 1,945 2,138 2,021 1,937 1,725 1,335 1,055 764

Panel C - Boy-Boy Twin Pairs
Log Birth Weight 0.362 0.407 0.431 0.558 0.467 0.641 0.590 0.527

[0.104]*** [0.094]*** [0.096]*** [0.096]*** [0.102]*** [0.115]*** [0.136]*** [0.161]***
Constant -2.965 -3.217 -3.361 -4.328 -3.560 -4.895 -4.485 -4.002

[0.809]*** [0.732]*** [0.753]*** [0.754]*** [0.795]*** [0.904]*** [1.065]*** [1.260]***
Number of Twin Pairs 2,568 2,932 2,774 2,699 2,339 1,871 1,496 1,094

Panel D - Girl-Girl Twin Pairs
Log Birth Weight 0.509 0.625 0.553 0.686 0.629 0.597 0.523 0.559

[0.083]*** [0.078]*** [0.078]*** [0.076]*** [0.081]*** [0.089]*** [0.100]*** [0.122]***
Constant -4.101 -4.993 -4.376 -5.374 -4.814 -4.521 -3.955 -4.281

[0.647]*** [0.608]*** [0.605]*** [0.594]*** [0.635]*** [0.697]*** [0.780]*** [0.949]***
Number of Twin Pairs 3,340 3,794 3,660 3,580 3,166 2,609 2,103 1,523

Notes: Twins fixed effects employed in all regressions. Regressions are based on Equation 15 in the main text. Robust standard errors in brackets. *** p <

0.01, ** p < 0.05, * p < 0.1.
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